Система эвристических методов Г.Д. Балка
Решение. Возможно рассмотреть такие частные случаи нарастающей сложности:
n = 0, m = 1;
n = 0, m = 2;
n = 0, m – любое;
n = 1, m – любое;
n = 2, m – любое ;
n – любое, m – любое (m>n).
Первые три случая тривиальны, поскольку первый игрок может вынуть сразу все шары. В следующих трех случаях первый игрок очевидно должен каждым своим ходом уравнивать количество шаров в соответствии с другим ящиком.
Часто поиск решения предложенной задачи значительно упрощается, если предварительно решить такую вспомогательную задачу, которая имеет сходное условие с данной задачей, но в которой условие или некоторые данные получаются из условия или из данных исходной задачи путем предельного перехода. Например, некоторые из фигур, о которых говорится в исходной задаче, заменяются их предельными положениями. Иначе:
если в исходной задаче идет речь о секущей к окружности, то вместо нее во вспомогательной задаче следует рассмотреть касательную (предельное положение секущей, когда расстояние ее от центра стремится к радиусу);
если в условии задачи говорится о четырехугольнике, то во вспомогательной задаче можно рассматривать треугольник (предельное положение четырехугольника, когда длина одной из его сторон стремится к нулю).
Важно учитывать то, что для одной и той же задачи можно подобрать различные предельные случаи.
Кроме того, рассмотрение предельного случая полезно также при выяснении правдоподобия того или иного готового результата (ответа к задаче, данной формулы), а также для построения опровержения.
Для иллюстрации метода подходит следующая задача.
Задача 14. В четырехугольнике ABCD две стороны AD и BC не параллельны. Что больше: полусумма этих сторон или отрезок MN, соединяющий середины двух других сторон четырехугольника?
![]() |
Поиск решения. Важно представить, что будет получено в предельном случае, когда В одна из сторон четырехугольника стянется в одну точку. В данном случае стягивать в точку МN можно либо BC (или AD), либо AB (или CD).
Рассмотрим первый случай, тогда пусть BC стянется в точку B. В предельном положении А D точка N совпадет с серединой К отрезка BD, и MN станет средней линией MK
![]() |
Bтреугольника ABD, в предельном случае получаем такую задачу: что больше, половина стороны AD треугольника ABD или отрезок M, соединяющий MK (N)середины двух других сторон?
Ответ прост: MK =
AD.
Поставим цель – свести к полученному предельному
ADслучаю решение задачи в общем случае.
Решение. Пусть К – середина диагонали BD четырехугольника ABCD. Из
ABD имеем MK =
AD и MK || AD. Также из
BCD имеем KN =
BC и KN || BC.
Статьи о педагогике:
Особенности работы школы с многодетной семьей
По мнению Ю.П. Азарьева работу с многодетной семьей школа, а если быть точнее, то социальный педагог начинает с её изучения. Рассмотрим проблемы многодетных семей, с которыми чаще всего сталкивается школа и социальный педагог. Это могут быть многодетные семьи, где ребенок может жить в постоянных сс ...
Разработка и апробация системы уроков с
использованием ролевых игр для развития диалогической речи на уроках
английского языка
На данном этапе исследования (в рамках формирующего этапа) было разработано и проведено 8 уроков, в течение которых использовались ролевые игры, направленные на развитие диалогической речи. Ролевые игры являли собой определенную ролевую ситуацию. Основными параметрами, определяющими характер ролево ...
Воспитание силовых способностей
Понятием "силовые способности" начали широко пользоваться в последние десятилетия для конкретизации представлений о силовых возможностях или о силе как об одном из физических качеств спортсмена. В исследованиях обнаружено, что различные типы силовых проявлений (например, в статических усл ...
Меню
- Главная
- Воспитание трудолюбия дошкольников
- История развития педагогики
- Физическая культура в младших классах
- Детская и юношеская субкультуры
- Развитие женского образования в России
- Психология и педагогика
- Перспективы образования



