Метод моделирования
Этот метод состоит в замене исходной задачи другой задачей, моделью исходной. Примером использования такого метода является широко применяемый метод решения текстовых (сюжетных) задач путем составления уравнения или системы уравнений. Приведем пример использования этого метода.
Задача 8. В квартире десять лампочек. Сколько существует различных способов освещения квартиры? Два способ освещения считаются различными, если они отличаются состоянием хотя бы одной лампочки. Каждая лампочка может гореть и не гореть. Случай, когда все лампочки не горят, - это тоже способ освещения.
Решение. Чтобы легче подсчитать все различные способы освещения квартиры, изобразим каждую лампочку в виде квадрата, а ее состояние будем отмечать знаком “+”, если лампочка горит, и знаком “ – ” в противоположном случае.
Тогда каждому способу освещения квартиры будет соответствовать строка из десяти квадратов со знаком “+” или “ – ”.
+ |
+ |
– |
– |
+ |
– |
+ |
+ |
– |
– |
Число же таких строк в таблице и есть искомое число различных способов освещения квартиры
Исходя из выше сказанного, получаем следующую задачу.
Имеем прямоугольную таблицу, содержащую 10 столбцов. В каждой клетке стоит “+” или “ – ”. Любые две строки таблицы отличаются знаками в клеточках, стоящих хотя бы в одном и том же столбце. Какое наибольшее число строк имеет эта таблица?
Если решение этой задачи не очевидно, то можно рассматривать каждую строку таблицы, о которой идет речь в предыдущей задаче, как десятичное число, составленное из цифр 1 и 0 ( 1 ~ “+”, 0 ~ “ – ”). Тогда вопрос задачи будет звучать следующим образом: сколько различных десятизначных чисел можно образовать из цифр 0 и 1? (При этом числа, в записи которых слева стоят одни нули, например, 0100001101 или 0000000001 или даже, 0000000000, также рассматриваются).
Решение. На каждом месте в записи десятизначного числа могут стоять лишь цифры 1 и 0. Поэтому имеется лишь две комбинации цифр на каждом месте. Эти комбинации независимы друг от друга, так как проставление цифры на данном месте в записи числа не зависит от того, какие цифры стоят на других местах. Поэтому общее число комбинаций или возможных десятичных различных чисел равно 2 = 1024.
Итак, ответ: общее число способов освещения квартиры равно 1024.
Задача 9. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершин треугольника.
Данная задача легко решается, если построить физическую или векторную ее модели.
Физическая модель. Для построения физической модели нужно вспомнить положения курса физики: 1) центр тяжести двух материальных точек с одинаковой массой лежит в середине отрезка, соединяющего эти точки, с массой, равной сумме масс этих точек;
2) центр тяжести двух материальных точек с различной массой лежит в точке, делящей отрезок в отношении масс (большей массе соответствует меньший отрезок и, наоборот);
3) Центр тяжести системы точек находится путем нахождения центра тяжести пар точек из этой системы, и при этом он не зависит от того , в каком порядке соединяются эти точки попарно.
Решение. Докажем сначала, что медианы треугольника пересекаются в одной точке. Для этого определим центр тяжести системы вершин треугольника. В вершины треугольника – как материальные точки поместим массы по 1 в каждую. Тогда, по 1) положению центр масс каждой пары вершин находится в середине отрезка с концами в этих вершинах.
![]() |
Статьи о педагогике:
Теоретические аспекты обучения старших дошкольников
измерительной деятельности и развитие представлений о величине
Вопрос о роли измерений в формировании первых математических представлений ставился еще в работах К.Д. Ушинского [1]. Прогрессивные представители русской методики арифметики также значительное внимание уделяли этой проблеме. Первые советские методисты в области дошкольного воспитания (Е.И. Тихеева, ...
Влияние гармоничных и дисгармоничных звучаний
В век информационных технологий у человека нет возможности остаться наедине со своими мыслями, нас окружает непрерывные поток информации, который начинается с того, как мы выходим с утра на улицу. Например, спускаясь по эскалатору в метрополитене, нет никаких шансов погрузиться в литературу (будь т ...
Колония-мануфактура
Здесь я опишу трудовые успехи коммуны им. Дзержинского в 1930 – 1931 гг. Это был период её перехода на полукустарное производство. По существу, эпоха простеньких мастерских и примитивного сельского хозяйства уже закончилась, однако, эра настоящей индустриализации колонии ещё не наступила. В начале ...
Меню
- Главная
- Воспитание трудолюбия дошкольников
- История развития педагогики
- Физическая культура в младших классах
- Детская и юношеская субкультуры
- Развитие женского образования в России
- Психология и педагогика
- Перспективы образования