Метод моделирования

Страница 1

Этот метод состоит в замене исходной задачи другой задачей, моделью исходной. Примером использования такого метода является широко применяемый метод решения текстовых (сюжетных) задач путем составления уравнения или системы уравнений. Приведем пример использования этого метода.

Задача 8. В квартире десять лампочек. Сколько существует различных способов освещения квартиры? Два способ освещения считаются различными, если они отличаются состоянием хотя бы одной лампочки. Каждая лампочка может гореть и не гореть. Случай, когда все лампочки не горят, - это тоже способ освещения.

Решение. Чтобы легче подсчитать все различные способы освещения квартиры, изобразим каждую лампочку в виде квадрата, а ее состояние будем отмечать знаком “+”, если лампочка горит, и знаком “ – ” в противоположном случае.

Тогда каждому способу освещения квартиры будет соответствовать строка из десяти квадратов со знаком “+” или “ – ”.

+

+

+

+

+

Число же таких строк в таблице и есть искомое число различных способов освещения квартиры

Исходя из выше сказанного, получаем следующую задачу.

Имеем прямоугольную таблицу, содержащую 10 столбцов. В каждой клетке стоит “+” или “ – ”. Любые две строки таблицы отличаются знаками в клеточках, стоящих хотя бы в одном и том же столбце. Какое наибольшее число строк имеет эта таблица?

Если решение этой задачи не очевидно, то можно рассматривать каждую строку таблицы, о которой идет речь в предыдущей задаче, как десятичное число, составленное из цифр 1 и 0 ( 1 ~ “+”, 0 ~ “ – ”). Тогда вопрос задачи будет звучать следующим образом: сколько различных десятизначных чисел можно образовать из цифр 0 и 1? (При этом числа, в записи которых слева стоят одни нули, например, 0100001101 или 0000000001 или даже, 0000000000, также рассматриваются).

Решение. На каждом месте в записи десятизначного числа могут стоять лишь цифры 1 и 0. Поэтому имеется лишь две комбинации цифр на каждом месте. Эти комбинации независимы друг от друга, так как проставление цифры на данном месте в записи числа не зависит от того, какие цифры стоят на других местах. Поэтому общее число комбинаций или возможных десятичных различных чисел равно 2 = 1024.

Итак, ответ: общее число способов освещения квартиры равно 1024.

Задача 9. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершин треугольника.

Данная задача легко решается, если построить физическую или векторную ее модели.

Физическая модель. Для построения физической модели нужно вспомнить положения курса физики: 1) центр тяжести двух материальных точек с одинаковой массой лежит в середине отрезка, соединяющего эти точки, с массой, равной сумме масс этих точек;

2) центр тяжести двух материальных точек с различной массой лежит в точке, делящей отрезок в отношении масс (большей массе соответствует меньший отрезок и, наоборот);

3) Центр тяжести системы точек находится путем нахождения центра тяжести пар точек из этой системы, и при этом он не зависит от того , в каком порядке соединяются эти точки попарно.

Решение. Докажем сначала, что медианы треугольника пересекаются в одной точке. Для этого определим центр тяжести системы вершин треугольника. В вершины треугольника – как материальные точки поместим массы по 1 в каждую. Тогда, по 1) положению центр масс каждой пары вершин находится в середине отрезка с концами в этих вершинах.

Страницы: 1 2


Статьи о педагогике:

Пути реализации метода проектов
Варианты творческих проектов для участия в олимпиадах с учетом возрастных возможностей учащихся 5-8 классов представлены в таблице 1. Таблица 1. Варианты творческих проектов Направление Тема творческого проекта возраст Кружки «Изготовление шкатулки с элементами геометрической резьбы» 6-7 класс «Изг ...

Психолого-педагогическая диагностика уровня развития коммуникативных способностей младших школьников
Развитие коммуникативных способностей учащихся предполагает понимание учителем целей обучения речевому общению. Возможности урока, способствующие развитию коммуникативных способностей ученика начальной школы огромны. И в нашей работе, с целью определения уровня сформированности коммуникативных спос ...

Изобразительная деятельность как показатель психического развития
Трудно представить рисующим взрослого человека, который не является художником. Дети же, в известном смысле, все являются художниками. Изобразительная деятельность для них естественна и приятна. Она формируется по мере становления психики ребенка и таким образом может служить показателем психическо ...

Меню

Copyright © 2021 - All Rights Reserved - www.mainedu.ru