Методика изучения аксиом стереометрии

Страница 1

Построение системы аксиом стереометрии происходит по двум направлениям: 1) переформулирование аксиом планиметрии для пространства; 2) добавление новых “специфических” аксиом стереометрии.

Первое из них осуществляется через принятие аксиомы: “В каждой плоскости пространства справедливы (выполнимы) все аксиомы планиметрии”. Второе состоит в формулировании нескольких аксиом принадлежности для пространства. В учебнике Погорелова использовано второе направление. Т.к. вводится новый геометрический образ – плоскость, то её основные свойства в пространстве выражают аксиомы:

С1. Какова бы не была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.

С2. Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

С3. Если две различные прямые имеют общую точку. То через них можно провести плоскость, и притом только одну.

Таким образом, система аксиом стереометрии состоит из аксиом планиметрии и группы аксиом С.

Методическая схема изучения аксиом стереометрии

Разъяснить абстрактный характер геометрических понятий.

Разъяснить сущность аксиом и их роль в построении геометрии, сформулировать аксиомы.

Проиллюстрировать аксиомы на моделях.

Закрепить аксиомы путём логического анализа их формулировок.

Закрепить аксиомы в процессе их применения к выводу первых следствий геометрии принадлежности в пространстве, к решению задач.

Проиллюстрируем схему на аксиомах группы С.

Понятие плоскость, точка, прямая – абстрактны, т.к. в каждом из случаев отвлекались от свойств ограниченности, линейных размеров, возможной ширины, которыми обладали эти предметы в окружающей действительности.

Перечисленные свойства позволяют строить сечение многогранников, доказывать следствия, вытекающие из аксиом.

В качестве иллюстрации аксиом на модели воспользуемся рисунком куба, по которому учащиеся могут ответить на следующие вопросы: перечислить точки, принадлежащие плоскостям: (ABC),(AA1B1),(D1C1C),(A1B1C1); назвать плоскости, которым принадлежат точки D1,C,B1,A,M,N; назвать линии пересечения плоскостей (AA1D1) и (ABC), (DD1C1) и (BB1C1); имеют ли они общие точки; можно ли провести плоскость через следующие пары прямых: AB и AD, A1B1 и BB1, A1D1 и C1C, BC и AA1.

4. Аксиома С1: “Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей”. Её анализ можно направить вопросами: О каких геометрических фигурах говорится в этой аксиоме? - О плоскости и точках. Что именно говорится о плоскости и точках? - На каждой плоскости имеются точки, принадлежащие ей; для каждой плоскости можно указать точки, которые ей не принадлежат. Сколько утверждений сформулировано в аксиоме С1? Сформулируйте их по отдельности. - Сформулированы два утверждения: 1) какова бы ни была плоскость, существуют точки, принадлежащие ей; 2) какова бы ни была плоскость, существуют точки, не принадлежащие ей. Какими другими словами можно заменить слова “какова бы ни была плоскость”?

5. На рисунке изображены две различные плоскости a и b, имеющие общую точку A. Сколько общих точек имеют плоскости a и b?

Т.к. плоскости – неограниченны и используя аксиому С2, получаем ответ: бесконечно много точек, расположенных на прямой, являющейся их линией пересечения.

Задача: Можно ли через точку пересечения двух данных прямых провести третью прямую, не лежащую с ними в одной плоскости? Объясните ответ.

По аксиоме С3 пересекающиеся данные прямые задают положение одной из плоскостей в пространстве. В пространстве найдётся прямая, не принадлежащая данной плоскости (применяем аксиому С1, по которой выбрав любую точку, не принадлежащую построенной плоскости, и точку пересечения данных прямых, строим искомую прямую). Такую прямую можно построить.

Роль аксиом в построении геометрии хорошо видна при доказательстве первых следствий, которые в действующем учебнике представлены в виде теорем.

Т.15.1. Через прямую и не лежащую на ней точку можно построить плоскость, и притом только одну.

Для лучшего выделения всех предложений, используемых при доказательстве следствия, целесообразно доказательство оформить в виде таблицы с двумя колонками “утверждения” и “на основании”.

Утверждения

На основании

Прямая AB, точка С

Аксиома I. Какова бы ни была прямая, существуют точки, принадлежащие прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну.

ABÇAC=A

Если прямые имеют одну общую точку, то они пересекаются

плоскость a

Аксиома С3: Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

Единственность: $-ет a¢, проходящая через прямую AB и С. Þ aÇa¢ по прямой, которой принадлежат A,B,C.

Аксиома С2 Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

A,B,C не лежат на одной прямой

Условие задачи

Противоречие.

Страницы: 1 2


Статьи о педагогике:

Правовое воспитание в школе
В наше время с пугающей частотой говорят о подростковой преступности. На наш взгляд это происходит потому, что дети зачастую не понимают в силу молодости и горячности тяжесть содеянного. Для этого можно создать программу по правовому воспитанию несовершеннолетних. Так, например, можно социальному п ...

Монолог как одна из форм говорения
Монологическая речь - это особый вид вербального общения людей, предполагающий процесс формирования и формулирования своих мыслей посредством звуковой системы языка. Продуктом монологического общения является монологическое высказывание, особое и сложное умение, которое нужно специально формировать ...

Метод моделирования
Этот метод состоит в замене исходной задачи другой задачей, моделью исходной. Примером использования такого метода является широко применяемый метод решения текстовых (сюжетных) задач путем составления уравнения или системы уравнений. Приведем пример использования этого метода. Задача 8. В квартире ...

Меню

Copyright © 2025 - All Rights Reserved - www.mainedu.ru