Мотивационные элементы в преподавании школьных математических дисциплин

Перспективы образования » Развитие мотивационной составляющей учебной математической деятельности школьников » Мотивационные элементы в преподавании школьных математических дисциплин

Варианты построения школьных математических дисциплин, с точки зрения характера используемого дедуктивного аппарата, претерпевали различные изменения. Характерной чертой целенаправленного применения рассматриваемого подхода, важной в мотивационном отношении, является ориентация на активное участие самих учеников в построении фрагментов математических теорий («дедуктивных островков») на основе специальной исследовательской работы, проводимой ими совместно с учителями.

Важно предусмотреть реализацию следующей последовательности этапов, являющейся результатом обобщения и уточнения предлагаемых в литературе методических схем:

1) анализ эмпирического материала и выделение в нём определенных закономерностей;

2) перевод этих закономерностей на математический язык, формулы;

3) уточнение терминологии и формулировок рассматриваемых предложений на основе попыток обобщения, анализа предельных случаев, подбора контрпримеров;

4) доказательство различных математических фактов с опорой на интуицию и прошлый опыт учащихся;

5) применение прошлого опыта при решении, как стандартных задач, так и задач, предполагающих привлечение недостающей информации в заранее определенном (учителем, учеником или совместно) «диапазоне выбора»;

6) исследование других возможных вариантов логической организации рассматриваемого фрагмента теории (рекомендуется реализовать либо на внеклассных занятиях, либо в виде индивидуальных творческих заданий).

Такой подход к построению содержания школьных математических курсов даёт возможность осознать учащимися цели и характер их предметной деятельности, обеспечивает их активное участие в выборе и реализации направления этой деятельности, позволяет подготовить школьников к «деятельностному» восприятию материала других тем школьного курса математики.

Мотивационные характеристики метода обучения можно представить в виде упорядоченной тройки признаков; доминирующий характер целеобразования (внешнего, смешанного или внутреннего – A1,A2,A3); ориентация на ту или иную степень соотнесения различных форм представления материала, соответствующих определённой когнитивной подструктуре мышления (незначительную, среднюю или высокую – I1, I2, I3); уровень обобщённости усваиваемого содержания (низкий, средний, высокий – G1, G2, G3). Данные параметры могут быть использованы в качестве ориентиров для описания различных стратегий обучения математике на всех уровнях его организации. Более подробное описание этих признаков представлено в следующей таблице:

Таблица 1

A

I

G

1

Цель «спускается сверху» с помощью прямого указания учителя

«Наглядно-эмпирическое» изучение материала

Выполнение действий по образцу или конкретному алгоритму

2

Производится работа по принятию учебной цели учащимися

Целесообразная перекодировка и преобразование содержания в рамках доступного когнитивного диапазона

Ориентация на вариативное применение общих предписаний, подкрепляемое наводящими вопросами и указаниями учителя

3

Цель осознаётся учащимися в ходе относительно самостоятельного решения проблемной ситуации

Организация проблемного исследования на основе многостороннего анализа ситуации

Преимущественная опора на сформированные общие и специальные учебные приемы

Какой из методов использовать в данной ситуации решается с позиции всей системы методов обучения данной теме или разделу. Оптимальное сочетание различных методов обучения должно достигаться не только в рамках целой темы, но и в рамках отдельного урока.


Статьи о педагогике:

Формирование правовых знаний слушателей в условиях реформирования образования
Во всем мире начиная с 60-х гг. ХХ столетия общественная формация вступила в этап перехода от постиндустриального общества к обществу знаний - обществу, экономика которого основана на знаниях. В настоящее время подчеркивание значения знаний в экономике будущего является одним из наиболее популярных ...

Типология городов
Типология — метод познания сложных объектов, основанный на выявлении главных их свойств. Н.Н. Баранский считал вопрос о типологии городов одним из двух главных общих вопросов, которые возникают при изучении городов. В.В. Покшишевский назвал типологию могущественным инструментом обобщения. Типология ...

Система дидактических игр повышающих речевую готовность детей
Опытно-экспериментальная работа по развитию речи дошкольников реализовывалась посредством систематизированной работы с детьми в процессе комплексных занятий в условиях ДОУ с использованием дидактических игр. На этом этапе исследования решались следующие задачи: проверить эффективность специально ра ...

Меню

Copyright © 2025 - All Rights Reserved - www.mainedu.ru