Методика изучения параллельности прямых и плоскостей
Содержание: определения параллельных и скрещивающихся прямых в пространстве, теорема о существовании и единственности прямой, проходящей через данную точку параллельно данной прямой, транзитивность параллельности прямых, параллельность прямой и плоскости (определение и признак), параллельность плоскостей (определение и признак), изображение пространственных фигур на плоскости.
Наряду с обычными целями обучения геометрии здесь большую роль играет цель формирования у учащихся пространственного представления и воображения.
Методика изучения определения параллельных и скрещивающихся прямых построена с помощью логической операции отрицания: “Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются”. “Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися”. Точный смысл понятий: “прямые не пересекаются”, “прямые не лежат в одной плоскости” может быть получен с помощью операции отрицания понятий “прямые пересекаются”, “прямые лежат в одной плоскости”.
Методическая схема изучения параллельных и скрещивающихся прямых в пространстве
Сообщить определения;
проиллюстрировать эти понятия на модели куба, классной комнате, рисунке;
провести логический анализ формулировки определения;
выполнить задания на нахождение параллельных и скрещивающихся прямых на модели (рисунке) куба;
сопроводить показ параллельных и скрещивающихся прямых соответствующими обоснованиями.
Для облегчения логического анализа определений и построения отрицания полезно на доске выполнить следующие записи:
прямые a и b пересекаются: имеют общую точку, и притом только одну;
прямые a и b не пересекаются: не имеют общих точек или общих точек более одной.
Понятие параллельного проектирования вводится с помощью генетического определения. В соответствии с общей особенностью генетических определений используется методическая схема изучения параллельного проектирования:
одновременно проговорить определения и произвести построения (выполняется учителем);
одновременно проговорить определения и показать соответствующие построения на готовом рисунке (выполняется учеником); стереть имеющийся на доске рисунок;
одновременно проговорить определение и выполнить новый рисунок (выполняется учеником).
Методику изучения теорем и их доказательств рассмотрим на примере признака параллельности прямой и плоскости: “Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости”.
Методическая схема:
подвести учащихся к теореме, сформулировать ее;
выполнить рисунок, краткую запись теоремы;
сообщать общую идею теоремы;
привести план доказательства;
предоставить учащимся возможность самостоятельно осуществить док-во;
осуществить доказательство (ученик);
закрепить доказательство путем его воспроизведения;
применить теорему к решению задач.
Подведение учащихся к теореме: на стол положим спицу а1, вторую спицу положим так, чтобы она была параллельна спице а1.
Вопрос: что можно сказать о взаимном расположении спицы а и поверхности стола?
После опыта задается вопрос: Какую теорему можно сформулировать?
Идея доказательства: (после выполнения рисунка и краткой записи теоремы).
Выполним доп. построение: через параллельные прямые а и а1 проведем плоскость a1.
Док-во от противного:
Учтем, что все общие точки плоскостей a и a1 должны принадлежать прямой а1.
План доказательства:
проводим плоскость a1;
делаем допущение, что а не параллельна a;
рассмотрим точку А, точку пересечения прямой а и плоскости a;
приходим к выводу, что прямые а и а1 пересекаются;
противоречие;
а//a.
После проведения доказательства решим следующую задачу:
Статьи о педагогике:
Художественные средства модернизации развивающей среды в ДОУ
а) Конструкция и форма:Конструкция и форма помещений строится в нашей стране по типовым и индивидуальным проектам. Типы зданий и детских дошкольных учреждений имеют существенные различия между собой. Эти различия определяются и условиями строительства, и климатом, и особенностями местности. Более э ...
Исходные принципы методики обучения литературе в иностранной аудитории
Преподаватель, даже блестяще владеющий всеми аспектами, видами речевой деятельности, еще не учитель, если не умеет обучать, не владеет средством, позволяющим делать это. Таким средством служит для учителя методическая культура, которая является стержнем, на который «нанизывается» психологическая, п ...
Россия в Болонском процессе
Интеграция в мировую систему высшего образования системы высшего профессионального образования Российской Федерации при сохранении и развитии достижений и традиций российской высшей школы - это один из принципов государственной политики в сфере образования, который зафиксирован Федеральным законом ...
Меню
- Главная
- Воспитание трудолюбия дошкольников
- История развития педагогики
- Физическая культура в младших классах
- Детская и юношеская субкультуры
- Развитие женского образования в России
- Психология и педагогика
- Перспективы образования