Методика изучения параллельности прямых и плоскостей
Содержание: определения параллельных и скрещивающихся прямых в пространстве, теорема о существовании и единственности прямой, проходящей через данную точку параллельно данной прямой, транзитивность параллельности прямых, параллельность прямой и плоскости (определение и признак), параллельность плоскостей (определение и признак), изображение пространственных фигур на плоскости.
Наряду с обычными целями обучения геометрии здесь большую роль играет цель формирования у учащихся пространственного представления и воображения.
Методика изучения определения параллельных и скрещивающихся прямых построена с помощью логической операции отрицания: “Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются”. “Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися”. Точный смысл понятий: “прямые не пересекаются”, “прямые не лежат в одной плоскости” может быть получен с помощью операции отрицания понятий “прямые пересекаются”, “прямые лежат в одной плоскости”.
Методическая схема изучения параллельных и скрещивающихся прямых в пространстве
Сообщить определения;
проиллюстрировать эти понятия на модели куба, классной комнате, рисунке;
провести логический анализ формулировки определения;
выполнить задания на нахождение параллельных и скрещивающихся прямых на модели (рисунке) куба;
сопроводить показ параллельных и скрещивающихся прямых соответствующими обоснованиями.
Для облегчения логического анализа определений и построения отрицания полезно на доске выполнить следующие записи:
прямые a и b пересекаются: имеют общую точку, и притом только одну;
прямые a и b не пересекаются: не имеют общих точек или общих точек более одной.
Понятие параллельного проектирования вводится с помощью генетического определения. В соответствии с общей особенностью генетических определений используется методическая схема изучения параллельного проектирования:
одновременно проговорить определения и произвести построения (выполняется учителем);
одновременно проговорить определения и показать соответствующие построения на готовом рисунке (выполняется учеником); стереть имеющийся на доске рисунок;
одновременно проговорить определение и выполнить новый рисунок (выполняется учеником).
Методику изучения теорем и их доказательств рассмотрим на примере признака параллельности прямой и плоскости: “Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости”.
Методическая схема:
подвести учащихся к теореме, сформулировать ее;
выполнить рисунок, краткую запись теоремы;
сообщать общую идею теоремы;
привести план доказательства;
предоставить учащимся возможность самостоятельно осуществить док-во;
осуществить доказательство (ученик);
закрепить доказательство путем его воспроизведения;
применить теорему к решению задач.
Подведение учащихся к теореме: на стол положим спицу а1, вторую спицу положим так, чтобы она была параллельна спице а1.
Вопрос: что можно сказать о взаимном расположении спицы а и поверхности стола?
После опыта задается вопрос: Какую теорему можно сформулировать?
Идея доказательства: (после выполнения рисунка и краткой записи теоремы).
Выполним доп. построение: через параллельные прямые а и а1 проведем плоскость a1.
Док-во от противного:
Учтем, что все общие точки плоскостей a и a1 должны принадлежать прямой а1.
План доказательства:
проводим плоскость a1;
делаем допущение, что а не параллельна a;
рассмотрим точку А, точку пересечения прямой а и плоскости a;
приходим к выводу, что прямые а и а1 пересекаются;
противоречие;
а//a.
После проведения доказательства решим следующую задачу:
Статьи о педагогике:
Создание условий для формирования эстетического воспитания
Одной из истинных человеческих потребностей является потребность в красоте как естественное стремление человека к гармонии, целостности, равновесию и порядку. О том, что это именно жизненная потребность человека, говорят результаты исследований антропологов, установивших, что на определенной стадии ...
Связь общения и развития речи
Речь развивается и проявляется в общении людей. Интересы развития языка ребенка требуют постепенного расширения его социальных связей. Они влияют как на содержание, так и на структуру речи. В своем социальном развитии ребенок, начиная с первичной социальной ячейки (мать и дитя), членом которой он с ...
Описание результатов педагогического эксперимента
Исследование уровня мотивации к изучению математики проводилось в рамках естественного эксперимента на материале предмета «Алгебра» в 7-х классах. Замеры проводились в начале и в конце экспериментальной темы. В контрольном классе – 20 учащихся, в экспериментальном классе – 20 учащихся. Подсчитав дл ...
Меню
- Главная
- Воспитание трудолюбия дошкольников
- История развития педагогики
- Физическая культура в младших классах
- Детская и юношеская субкультуры
- Развитие женского образования в России
- Психология и педагогика
- Перспективы образования