Роль дидактических игр в повышении мотивации изучения математики

Страница 1

Повышение интереса к математике зависит, в большей степени, от того, насколько умело построена учебная работа. Особенно в V –VIII классах надо позаботиться о том, чтобы каждый учащийся работал активно и увлечённо. Для этого необходимо развить у учащихся чувство любознательности и познавательного интереса. Немаловажная роль для решения этой задачи отводится дидактическим играм. Дидактические игры в V –VIII классах можно рассматривать не только как возможность эффективной организации взаимодействия учителя и учащихся с присущими им элементами соревнования, но и как метод формирования исследовательских навыков.

Создание игровых ситуаций повышает настроение учащихся, облегчает преодоление трудностей в понимании и усвоении учебного материала. Дидактические игры на уроках математики следует отличать от игры и игровых форм занятий, от забавы. Игра в учебном процессе должна носить обучающий характер. Важным моментом при применении дидактических игр является дисциплина. В зависимости от цели урока для дидактических игр:

– определяется игровой замысел дидактической игры;

– определяются правила игры;

– определяются правила поведения и игровые действия учащихся;

– определяется познавательное содержание;

– учитывается наличие необходимого оборудования (технических средства обучения: компьютера, диапозитивов, таблиц, моделей и т.д.).

Все указанные структурные элементы дидактической игры должны быть взаимосвязанными.

Организационную и содержательную стороны построения уроков математики, содержащих элементы игры как форму взаимодействия учителя с учащимися, в процессе которого через систему игровых действий реализуются учебно-воспитательные возможности, заложенные в содержании учебного материала, можно рассмотреть на конкретных примерах.

Средствами эмоционального воздействия являются необычность, новизна, неожиданность, несоответствие ранним представлениям, элементы занимательности.

При изучении темы «Арифметическая прогрессия» полезно сообщить учащимся следующие сведения из истории математики, которые связаны с формулой суммы п первых членов арифметической прогрессии. Речь идёт об эпизоде из жизни немецкого математика К. Ф. Гаусса (1777-1855). Когда ему было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму натуральных чисел от 1 до 40 включительно». Какого же было удивление учителя, когда один из учеников (это был Гаусс) через минуту воскликнул: «Я уже решил…»

Большинство учеников после долгих подсчётов получили неверный результат. В тетради Гаусса было написано одно число и притом верное. Вот схема рассуждений.

Давно замечено, что в процессе обучения, как правило, школьники лишь “впитывают” в себя новую информацию. Формы же их активности отличаются монотонностью, а источники обучения не отличаются разнообразием. И если ребенок остается пассивным на уроке изо дня в день, из недели в неделю, то развитие его познавательных способностей ограничивается лишь простым воспроизведением содержания предмета. Как правило, и учитель задает чаще стереотипные вопросы, направленные на воспроизведение материала урока. На то, чтобы ученики могли высказать свое мнение, не остается времени. В процессе обучения в арсенал приемов и методов человеческого мышления естественным образом традиционно включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование, аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умение формулировать, обосновывать и доказывать суждения, тем самым развивая мышление. Математика обладает огромными возможностями для умственного развития учеников, благодаря всей своей системе, исключительной ясности и точности своих понятий, выводов и формулировок.

Математика - это обширная страна, границы которой открыты для любого, кто по-настоящему любит думать. Она отражает в человеческом сознании захватывающую гармонию природы. Стоит отметить тот факт, что нельзя овладеть математикой путем лишь заучивания, зубрежки. Она требует сосредоточения, усердия и терпения. Необходимо поверить в то, что воспитание ума, культуры мышления учащихся, несмотря на сложность этого, казалось бы, косвенного пути, обеспечивает более высокие результаты в обучении математике.

Под математическим стилем мышления понимается целый комплекс умений:

умение классифицировать объекты,

умение открывать закономерности,

Страницы: 1 2 3


Статьи о педагогике:

Эмпирический, научно-теоретический - определяется по степени научной обоснованности
Психолого-педагогический, практический - определяется по характеру научной обоснованности. Длительный, кратковременный - по продолжительности во времени Основные этапы работы по изучению и обобщению передового педагогического опыта Работа по изучению, обобщению и распространению ППО - это не времен ...

Особенности развития диалогических умений учащихся младшего школьного возраста
Одним из наиболее эффективных средств развития и формирования навыка говорения в обучении иностранным языкам по правилу считается диалог. Многие преподаватели уже давно оценили широкие возможности, сочетающиеся с минимальными затратами времени и объективностью результатов. Основное назначение иност ...

Анализ практического опыта формирования положительного отношения младших школьников к миру труда и профессий
Нами был проанализирован практический опыт педагогов по проблеме формирования положительного отношения младших школьников к миру труда и профессий. Подробнее остановимся на наиболее интересных формах, методах и средствах. На уроках трудового обучения в 1-3 классах должен быть заложен фундамент обще ...

Меню

Copyright © 2021 - All Rights Reserved - www.mainedu.ru